Python Machine Learning Projects

by Lisa Tagliaferri, Michelle Morales, Ellie Birkbeck, Alvin Wan

DescriptionTable of ContentsDetailsHashtagsReport an issue

Book Description

As machine learning is increasingly leveraged to find patterns, conduct analysis, and make decisions - sometimes without final input from humans who may be impacted by these findings - it is crucial to invest in bringing more stakeholders into the fold. This book of Python projects in machine learning tries to do just that: to equip the developers of today and tomorrow with tools they can use to better understand, evaluate, and shape machine learning to help ensure that it is serving us all.

This book will set you up with a Python programming environment if you don't have one already, then provide you with a conceptual understanding of machine learning in the chapter "An Introduction to Machine Learning." What follows next are three Python machine learning projects. They will help you create a machine learning classifier, build a neural network to recognize handwritten digits, and give you a background in deep reinforcement learning through building a bot for Atari.

This open book is licensed under a Creative Commons License (CC BY-NC-SA). You can download Python Machine Learning Projects ebook for free in PDF format (2.1 MB).

Table of Contents

Setting Up a Python Programming Environment
An Introduction to Machine Learning
How To Build a Machine Learning Classifier in Python with Scikit-learn
How To Build a Neural Network to Recognize Handwritten Digits with TensorFlow
Bias-Variance for Deep Reinforcement Learning: How To Build a Bot for Atari with OpenAI Gym

Book Details

Computer Science
ISBN13 Digital
ISBN10 Digital
PDF Size
2.1 MB

Book Hashtags

Related Books

Machine Learning Yearning
AI is transforming numerous industries. Machine Learning Yearning, a free ebook from Andrew Ng, teaches you how to structure Machine Learning projects. This book is focused not on teaching you ML algorithms, but on how to make ML algorithms work. After reading Machine Learning Yearning, you will be able to: - Prioritize the most promising direc...
Machine Learning for Cyber Physical Systems
This book proceedings presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS - Machine Learning for Cyber Physical Systems, which was held in Karlsruhe, October 23-24, 2018. Cyber Physical Systems are characterized by their ability to...
Automated Machine Learning
This book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created ...
An Introduction to Machine Learning
This textbook presents fundamental machine learning concepts in an easy to understand manner by providing practical advice, using straightforward examples, and offering engaging discussions of relevant applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural ...
Multiple-Aspect Analysis of Semantic Trajectories
This free book constitutes the refereed post-conference proceedings of the First International Workshop on Multiple-Aspect Analysis of Semantic Trajectories, MASTER 2019, held in conjunction with the 19th European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, in W├╝rzburg, Germany, in September 2019. The 8 ful...
Efficient Learning Machines
Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, cla...