The Data Science Design Manual

by Steven S. Skiena

DescriptionDetailsHashtagsReport an issue

Book Description

This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an "Introduction to Data Science" course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains "War Stories," offering perspectives on how data science applies in the real world

This open book is licensed under a Creative Commons License (CC BY). You can download The Data Science Design Manual ebook for free in PDF format (17.7 MB).

Book Details

Computer Science
ISBN13 Digital
ISBN10 Digital
PDF Size
17.7 MB

Related Books

Methodological Investigations in Agent-Based Modelling
This book examines the methodological complications of using complexity science concepts within the social science domain. The opening chapters take the reader on a tour through the development of simulation methodologies in the fields of artificial life and population biology, then demonstrates the growing popularity and relevance of these method...
Data Science with Microsoft SQL Server 2016
R is one of the most popular, powerful data analytics languages and environments in use by data scientists. Actionable business data is often stored in Relational Database Management Systems (RDBMS), and one of the most widely used RDBMS is Microsoft SQL Server. Much more than a database server, it's a rich ecostructure with advanced analytic capab...
Projection-Based Clustering through Self-Organization and Swarm Intelligence
It covers aspects of unsupervised machine learning used for knowledge discovery in data science and introduces a data-driven approach to cluster analysis, the Databionic swarm(DBS). DBS consists of the 3D landscape visualization and clustering of data. The 3D landscape enables 3D printing of high-dimensional data structures.The clustering and numbe...
What Is Data Science?
We've all heard it: according to Hal Varian, statistics is the next sexy job. Five years ago, in What is Web 2.0, Tim O'Reilly said that "data is the next Intel Inside." But what does that statement mean? Why do we suddenly care about statistics and about data? This report examines the many sides of data science - the technologies, the co...
Understanding Society and Natural Resources
In this edited open access book leading scholars from different disciplinary backgrounds wrestle with social science integration opportunities and challenges. This book explores the growing concern of how best to achieve effective integration of the social science disciplines as a means for furthering natural resource social science and environment...
Regression Models for Data Science in R
The ideal reader for this book will be quantitatively literate and has a basic understanding of statistical concepts and R programming. The student should have a basic understanding of statistical inference such as contained in "Statistical inference for data science". The book gives a rigorous treatment of the elementary concepts of regr...